Human Factors Design Considerations for the Autonomous Operations Planner

Richard Barhydt
NASA Langley Research Center, Hampton, VA

NASA Human Factors Symposium Ames Research Center October 18-21, 2004

Distributed Air/Ground Traffic Management (DAG-TM)

- Long range focus designed to significantly improve system capacity while maintaining or improving safety.
- DAG-TM En Route Free Maneuvering component represents paradigm shift from centralized to distributed traffic management.
 - Autonomous aircraft flying under "Autonomous Flight Rules" (AFR) responsible for maintaining separation from all other traffic (AFR and IFR), while meeting traffic flow management constraints.
 - Air traffic service provider continues to provide traffic separation between IFR aircraft and assigns constraints to all aircraft for flow management.

DAG-TM Concept

- System capacity, airspace user flexibility, and user efficiency improved through
 - Sharing information related to flight intent, traffic, and the airspace environment.
 - Collaborative decision making among all involved system participants.
 - Distributing decision authority to the most appropriate decision maker.

Prototype ASAS Enables DAG-TM

- DAG-TM enabled through Airborne Separation Assurance System (ASAS).
- Autonomous Operations Planner (AOP), developed at NASA Langley, functions as prototype ASAS.
 - Uses currently available and anticipated information.
 - Compatible with existing aircraft systems and industry standards.
 - Supports airborne conflict management.
 - Conforms to established flight deck conventions and human factors guidelines.

Primary AOP Functions

Distributed Air / Ground Traffic Management

Conflict detection.

- Other aircraft.
- Airspace hazards (special use airspace, hazardous weather regions.)
- Conflict prevention.
 - Prevent maneuvers that would create near-term conflicts with other aircraft or airspace hazards.
 - No-fly zones.
 - Conflicts on provisional routes.
- Conflict resolution and flow constraint conformance.
 - Resolve conflicts with all other aircraft, airspace hazards, while meeting constraints (altitude, speed, time).
 - Strategic and tactical options.

AOP Human Factors Design Features

- Support AFR pilot's DAG-TM responsibilities.
- Conform to established flight deck conventions, pilot interfaces, and procedures.
- Integrate effectively with other information provided to pilot.
- Provide graded alerts and corresponding procedures based on time to conflict.
- Provide resolution options based on how pilot is currently flying airplane.
 - Tactical/strategic flight guidance.
- Facilitate training and line-oriented operation.
- Operate under real-world constraints.
 - Aircraft performance limitations.
 - Trajectory uncertainties.
 - Imperfect data availability.

Pilot Workstation Displays and Controls

- Displays and controls modeled after B-777.
- AOP pilot interface through Control Display Unit (CDU) and Traffic Display Control Panel

AOP Trajectory Processing Considerations

- Uses command trajectory as basis for conflict management functions.
 - Predicted path that aircraft will fly assuming pilot does not change current automation modes or settings.
 - Recommended by various forums (FAA/Eurocontrol Intent TIM, RTCA ADS-B MASPS).
 - Considers aircraft performance, autoflight mode logic, winds.
 - Integrates target states from multiple aircraft systems:
 - Flight Management System (FMS)
 - Control Display Unit (CDU)
 - Mode Control Panel (MCP)
 - Flight Control Computer (FCC)

Information Availability and Aircraft Control States

- Conflicts predicted based on available intent information from ownship and traffic aircraft.
- Resolutions consistent with aircraft's current control state.
- Three primary control states:
 - Manual (no flight director).
 - Target State.
 - One horizontal and vertical target available.
 - Trajectory.
 - Multiple horizontal and vertical targets available.

AOP Resolution Strategies

Distributed Air / Ground Traffic Management

- Resolutions allow pilot to fly aircraft in current control state/flight mode.
 - <u>Tactical</u> (Target State control): Mode Control Panel fly-to heading, vertical speed, and altitude commands.)

<u>Strategic</u> (Trajectory control): Flight Management System modified routes.

Navigation Display with Conflict Resolution

Distributed Air / Ground Traffic Management

Conflict Detection.

- Predicted separation loss along current flight path.
- Conflict Prevention.
 - No-fly zone.
- Conflict Resolution.
 - Recommended FMS mod route.
 - Consistent with pilot's current flight mode.

Experimental Evaluation

- AOP design based on refinements from several previous human-in-the-loop experiments:
 - "AUTRII" (2001) comparison of tactical and strategic conflict resolutions.
 - "TCHAP" (2002) AOP evaluation under highly-constrained or non-normal situations.
 - Tight maneuver corridors.
 - Pop-up conflicts.
 - Overly constrained conflicts.

- Recently completed Joint Experiment between Langley and Ames Research Centers.
 - Integrated air/ground environment with airline pilots and controllers.
 - Mixed operations (AFR and IFR) during cruise and descents to terminal area meter fix.

AOP-related Air/Ground Experiment Results

- Pilots provided favorable feedback on AOP functionality and user interface.
- Pilots used AOP effectively to meet ATC issued constraints (speed, altitude, and time) at meter fix, under varying traffic levels.
- Most separation violations due to missed alerts:
 - Software error in vertical conflict detection.
 - Trajectory prediction uncertainty at transition points.
 - Top of descent.
 - Waypoint turns.
- A few procedural issues noted:
 - Maneuvers without properly checking for presence of nearterm conflicts.
 - Failure to follow resolution guidance.

NASA

AOP Human Factors Development Areas

- Handling conflict prediction uncertainty.
 - Establish higher buffers for less certain trajectories:
 - Aircraft having less accurate navigation performance.
 - Open-loop trajectory change types (top of climb, top of descent, lateral path intercept).
 - Varying aircraft performance.
 - Changing environmental conditions.
- Improving availability of strategic resolutions (recommended changes to FMS path).
 - AOP sometimes unable to determine strategic resolution.
 - Incorporate reversion to tactical resolution when strategic resolution unavailable.

NASA

AOP Human Factors Development Areas

Distributed Air / Ground Traffic Management

Enhanced blending of state and intent information.

- Blunder protection currently provided if failure to follow broadcast intent would cause near-term conflict.
- Abrupt consideration of state vector information can lead to pop-up conflicts or false alerts.
- Will consider TCAS design principles and conformance monitoring.

Integration of TCAS into AOP.

- Data fusion (ADS-B and TCAS surveillance).
- Consideration of TCAS logic by AOP conflict detection routines.